

O que constitui uma experiência bem sucedida em Ensino de Química? Exemplos característicos do contexto grego Educacional

Katerina Salta, Dionysios Koulougliotis

Instituto de Educação Tecnológica (TEI) das Ilhas Jónicas Zakynthos, Grécia ksalta@chem.uoa.gr,dkoul@teiion.gr

Abstrato

Na primeira parte deste trabalho, uma breve revisão de literatura é feita sobre a questão do que se entende por "bem-sucedida experiência de ensino". A pesquisa tem fornecido evidências para componentes específicos que influenciam o "sucesso" ou seja, as crenças de auto-eficácia, feedback, possibilidade para o aluno auto-regulação e participação ativa, possibilidade para a investigação, a colaboração, a diferenciação de formas de aprendizagem dos alunos. Posteriormente, na segunda parte deste trabalho um conjunto de cinco exemplos de experiências bem sucedidas de ensino de química é brevemente apresentados e analisados criticamente. Em todos os casos, o "sucesso" das estratégias de ensino apresentados é justificada através de pesquisa educacional. Entre as bem-sucedidas experiências de química de ensino selecionadas, uma refere-se ao ensino primário (uso de partículas natureza da matéria para o ensino de mudanças de fase), um refere-se a reduzir o ensino secundário (uso de diferentes tipos de visualizações 3D para os métodos de separação de misturas de ensino '), dois referem-se para o ensino secundário superior (uso paralelo de experimento de laboratório e de TIC para o ensino de propriedades físico-químicas de ácidos graxos, minimizando a carga de memória de trabalho para o ensino de teoria atômica e de ligação) e um refere-se ao ensino na universidade (misturado modelo instrucional aprendizagem híbrida para o ensino de simetria molecular e teoria dos grupos). Os exemplos gregos a comprovar a necessidade de uso concomitante de uma variedade cuidadosamente selecionados de estratégias de ensino, técnicas e materiais, a fim de melhorar rapidamente a eficácia de química (e ciência) de ensino.

1. Introdução

O que constitui, na verdade, uma experiência de ensino de sucesso? É uma estratégia de ensino eficaz, que tem como objetivo melhorar a compreensão de conceitos de química ou língua específica química? Em essência, o que constitui uma experiência bem sucedida para uma pessoa é toda ação que fornece a base para uma mudança positiva na auto-eficácia. Teoria eficácia Auto é baseada na hipótese de que as experiências bem sucedidas levar a uma sensação de ser capaz de lidar em uma situação potencialmente estressante [1]. Bandura [2] declara que a auto-eficácia pode ser promovida através da observação de sucesso, experimentando o sucesso, técnicas de persuasão, e tom emocional positivo. Além disso, o feedback também é um componente crucial que ajuda a experiência bem sucedida.

Por outro lado, as experiências bem-sucedidas só não levantar as crenças de eficácia. Em vez disso, os fatores pessoais e ambientais, que incluem o processamento cognitivo de desempenho anterior, dificuldade da tarefa percebida, o esforço na tarefa, e ajuda recebida de outras pessoas, influenciar a formação das crenças de auto-eficácia [3]. Em todos os casos, os alunos com relativa elevada auto-eficácia têm melhor desempenho em cursos de química do que aqueles com relativa baixa auto-eficácia [4].

Durante o último quarto de século, a pesquisa em educação tem proporcionado uma compreensão mais profunda de como os alunos aprendem ciência e do conhecimento e as habilidades necessárias para o desempenho acadêmico. Este conhecimento é de valor inestimável para professores na orientação das

decisões de instrução e tem implicações para a educação científica a todos os níveis. Tendo em conta que os indivíduos aprendem em uma variedade de maneiras, é necessário prever as diferenças dos alunos através do uso intencional de uma variedade de estratégias de ensino que alimentam as diversas maneiras que os alunos aprendem. O ideal é que essas estratégias melhorar a aprendizagem dos alunos por a) estimular a participação ativa de todos os alunos; b) atender às diferentes maneiras os alunos aprendem; c) Oferecer oportunidades para os alunos a experiência autêntica pesquisa científica e colaborar com outras pessoas em diversos grupos e configurações. É importante reconhecer que nem todos os estratégia pode ou deve ser aplicado em todas as situações de ensino. Estratégias de ensino são ferramentas a serem utilizadas na concepção e implementação de instruções de uma forma que suporta e melhora a aprendizagem. É importante notar que as estratégias podem ser utilizadas em simultâneo, por exemplo, estratégias de tecnologia de instrução podem ser utilizados para melhorar o contexto para a aprendizagem. Experiências de laboratório bem projetadas incorporar uma série de metodologias de ensino e aprendizagem eficazes, incluindo estratégias de investigação e de manipulação. Tarefa do professor é o de determinar o que preconceitos e conhecimento os alunos trazem para a sala de aula, o que os conceitos e as habilidades que eles precisam para aprender, e que tipo de apoio as estruturas precisam ser fornecidos para que eles para atender às metas de aprendizagem. É o papel do professor para selecionar criteriosamente a partir de uma variedade de estratégias e técnicas essas que irá permitir de forma mais eficaz os alunos a desenvolver entendimentos profundos dos temas e cumprir as metas de aprendizagem previstas [5].

A abordagem de ensino bem-sucedido deve ser justificando o "sucesso" através da realização de pesquisas educacionais. Assim, cada implementação de uma estratégia de ensino ou um recurso de ensino necessita de uma avaliação, a fim de ser caracterizado como uma experiência bem sucedida. Na segunda parte deste trabalho serão apresentados alguns exemplos de abordagens de ensino de química desenvolvidos e avaliados no contexto educacional grego.

2. Experiências de sucesso em salas de aula de química gregos

A natureza complexa do assunto química tem sido identificada como um fator que faz a química difícil compreensão para os alunos. Os químicos estão usando vários tipos de representações químicas, a fim de comunicar o pensamento químico. A competência de representação é um conjunto de habilidades que os alunos têm de desenvolver, a fim de ser capaz de aprender e resolver problemas de química eo desenvolvimento de que é (ou deveria ser) um dos principais objetivos na educação química. Assim, o papel do pensamento visual-espacial, a fim de compreender plenamente vários tópicos fundamentais de química é importante. A pesquisa mostrou que a palestra convencional em que os alunos são na sua maioria ouvintes passivos e que emprega ilustrações estáticas tradicionais em 2D, coloca grandes dificuldades na compreensão de conceitos químicos que são dos alunos "não só complexa, mas também abstrato e dinâmico, como na simetria molecular" [6]. Consequentemente, vários educadores de química desenvolveram ferramentas de visualização 3D de TIC baseados moleculares que podem ser valiosas ", como materiais de apoio de aprendizagem". O que é necessário, porém, é "uma integração inovadora e eficaz de tecnologias educacionais para o ensino e aprendizagem de química" [6].

Em um projeto de pesquisa que durou três anos, a prova estava prevista para a capacidade de um modelo de ensino híbrido em afetar positivamente as atitudes e os resultados tanto dos alunos em um curso exigente química de graduação, ou seja, "simetria Molecular e Teoria de Grupos" [6]. A abordagem de ensino empregada é uma combinação de instrução tradicional face-a-face e um ambiente de aprendizagem on-line na web. O material de ensino baseado na web foi projetado e desenvolvido pelos próprios pesquisadores. O "modelo de ensino híbrido", sendo um sistema de blended learning, serve três funções: "habilitação (acesso e conveniência), melhorando (usando a tecnologia para agregar valor) e transformar (mudar para o projeto do curso, aprender através de interações e atividades)". Os resultados mostraram que a adoção do modelo é capaz de melhorar a quantidade ea qualidade do envolvimento dos alunos com o conteúdo do curso durante

todo o semestre. Através do modelo de ensino híbrido, os alunos têm a possibilidade de auto-regulação, ou seja, eles parecem assumir a responsabilidade por sua própria aprendizagem. A auto-regulação é conhecida a constituir um importante constructo motivacional. Além disso, os alunos recebem flexibilidade para ação e reflexão, a fim de melhorar o seu desempenho e de preparação para a próxima avaliação, bem como para a próxima reunião da categoria. O estudo fornece evidência para a importância do fator social (criação de uma comunidade de aprendizagem) na criação e manutenção de motivação dos alunos para aprender. A estratégia de ensino de sucesso apresentado ("modelo de ensino híbrido") é aplicada entre os estudantes de graduação de química na Universidade. No entanto, ele também poderia ser aplicada a alunos do ensino secundário, a fim de ajudá-los a entender conceitos abstratos e difíceis de química através da combinação de diferentes ferramentas de visualização com a instrução tradicional face-a-face.

Movendo-se para o papel da aprendizagem multimídia, pesquisadores observam que os estudos relevantes "não levaram em consideração fatores importantes que poderiam influenciar a seleção adequada dos meios de comunicação e, assim, não conseguiram produzir as diretrizes de design de multimídia conclusivos" [7]. Eles observam que os "estudos empíricos que se concentram sobre o impacto das visualizações 3D na aprendizagem são, até à data, rara e inconsistente". Por exemplo, existem evidências experimentais contraditórios sobre a superioridade geralmente assumido de animações em relação com gráficos estáticos. Korakakis, Pavlatou, Palyvos, e Spyrellis [7] empreendeu um esforço sistemático para avaliar quantitativamente a eficácia de um tipo específico de recursos de ensino, ou seja, visualizações 3D multimídia. O estudo analisou se o uso de três diferentes tipos de visualizações 3D (animação 3D ou seja interativo, animação 3D e ilustração 3D estática) acompanhada de narração e texto contribuir de forma diferente (ou semelhante) para o processo de aprendizagem dos alunos de 13-14 anos de idade em ciência cursos. Um tema de ensino relacionadas com a química foi utilizada, ou seja, "os diferentes métodos de separação de misturas". A análise estatística dos resultados foi baseada em uma amostra de 212 estudantes da 8 ª série (2 º ano do ensino secundário inferior) na Grécia. Os resultados mostraram que a primeira cena principal de uma aplicação multimédia interactiva não deve conter conhecimento essencial para o aluno, porque o processo de aprendizagem real ainda não é eficaz. Ambos os tipos de animação em 3D (interativo ou não) são mais eficazes para estimular o interesse dos alunos em relação a ilustrações 3D estáticas. Além disso, ambos os tipos de animações em 3D tendem a representar uma carga cognitiva mais pesada sobre os alunos e exigem habilidade metacognitiva adequado. Por outro lado, as figuras 3D estáticas têm uma vantagem em relação a ambos os tipos de 3D em relação com a redução da carga cognitiva. Deduz-se que "o uso unilateral de um dos três tipos de visualizações de não melhorar a eficácia do processo de aprendizagem". Em vez disso, "a combinação de todos os três tipos de visualizações em um aplicativo multimídia para as ciências é recomendado" [7].

Duas intervenções de ensino, visando a compreensão de fusão e ponto de ebulição abaixo de evaporação através do uso da natureza corpuscular da matéria dos alunos do ensino fundamental foram avaliados como experiências bem sucedidas [8]. Uma intervenção feito uso de um software de simulação e do outro de uma representação "estática" tradicional das partículas. Ambas as intervenções foram baseadas em um sistema de ensino adequado para alunos jovens (9-11 anos de idade) que foram desenvolvidos pelos pesquisadores. O esquema faz uso de uma abordagem passo-a-passo que se baseia na aprendizagem subsumptive (diferenciação progressiva de uma idéia mais geral) e tem uma carga cognitiva intrínseca muito mais baixo. Os resultados deste estudo ilustra as dificuldades que estão associadas com a mudança conceitual, pois houve casos de alunos que não podiam escapar de seus pontos de vista iniciais e criou explicações sintéticas dos fenômenos examinados com características tanto macroscópicas e microscópicas. Na pergunta "Será que a ajuda do software?" Os dados experimentais indicam que o software fornecido mais ajuda no caso de evaporação, que é o fenômeno mais difícil para os alunos a compreender. No entanto, os pesquisadores observaram que o software de simulação deve desempenhar um papel de apoio na instrução e que é "um recurso a ser implantado por professores ao lado de outras atividades de ensino" [8].

Outra pesquisa tem como objetivo avaliar a eficácia de uma intervenção de ensino específico (ou seja, o desempenho de um experimento de química com o uso paralelo da informática - sistema MBL) na melhoria da 10 ª série compreensão da relação entre as características (15-16 anos de idade) dos alunos de substâncias puras [9]. Os alunos foram estimulados a trabalhar em grupos, usando uma planilha específica, a fim de trocar idéias e chegar a conclusões durante o trabalho. Os dados relacionados com as percepções dos alunos e avaliação do processo de ensino foram coletados por meio de três métodos: gravações em vídeo, notas de campo e entrevistas semi-estruturadas, antes, durante e após o procedimento experimental. A classificação das concepções dos alunos sobre o conceito químico em estudo em quatro tipos diferentes foi o resultado do estudo. Além disso, os resultados mostraram que "após o experimento mais alunos responderam corretamente a todas as questões relativas ao ponto de congelamento dos ácidos graxos saturados, a relação entre o ponto de congelamento para o peso molecular ea descrição desta relação", independentemente do seu sexo. Além disso, os estudantes parecem preferir o desempenho do ensaio com o auxílio do sistema de MBL.

Uma abordagem de ensino alternativa foi aplicada em um tópico da química que é considerado difícil para os alunos, ou seja, atômicas e teoria de ligação, eo esforço foi feito, a fim de avaliar a sua eficácia, em comparação com a abordagem tradicional [10]. A avaliação da abordagem de ensino traz à tona a importância do papel que os diferentes fatores psicológicos e características cognitivas dos alunos podem desempenhar no processo de aprendizagem de química. O estudo centra-se em duas características específicas: capacidade de memória de trabalho e dependência de campo. Em primeiro lugar, a relação entre esses dois fatores psicológicos com o desempenho em testes de química foi analisada com uma amostra de 105 estudantes gregos 10 º ano (15-16 anos de idade) que tomaram o mesmo teste de química, enquanto que a sua dependência da capacidade e campo de memória de trabalho foram medido (via Dígitos para trás eo teste oculto Figura, respectivamente). Ambas as características cognitivas mostram correlação estatisticamente significativa com a pontuação de química dos alunos. Na etapa seguinte, foi explorada a possibilidade de melhorar a aprendizagem de química através de uma nova abordagem de ensino que visa minimizar a demanda por uma memória de trabalho de alto independentemente do espaço dos estudantes memória de trabalho. O objetivo da abordagem proposta é incentivar o aprendizado ativo por meio de um processo no qual os alunos vão interagir com o material, tirar conclusões, responder a perguntas e concluir cálculos simples. Além disso, o trabalho em grupo foi escolhido deliberadamente, pois ele pode reduzir os problemas decorrentes de espaço de memória de trabalho limitada. O delineamento experimental envolveu a participação de 211 estudantes de 10 º ano que foram divididos em dois grupos: controle e experimental. No geral, os resultados forneceram evidências em apoio da opinião de que, re-projetar alguns materiais curriculares e estratégias de ensino de acordo com as previsões sobre a aprendizagem derivada de um modelo de processamento de informações, o desempenho do aluno pode ser melhorado.

Embora os exemplos acima apresentados de experiências bem sucedidas de ensino de química foram realizados no contexto grego, os resultados alcançados e as propostas apresentadas em relação com redesign e adoção de novas estratégias de ensino curricular, poderia ser aplicado (e / ou testado) para outro países também. Finalmente, precisamos salientar que os exemplos do contexto educacional grego, também fornecem evidências para o fato de que a eficácia da química (e ciência) o ensino pode ser facilmente melhorada através da utilização paralela adequada de uma variedade cuidadosamente selecionados de estratégias de ensino, técnicas e materiais.

Referências

[1] Watters, J. J., & Ginns, I. S. (1995, abril). Origens e mudanças na pré-serviço eficácia do ensino das ciências professores. Trabalho apresentado na reunião anual da Associação Nacional de Pesquisa em Ensino de Ciências, San Francisco.

- [2] Bandura, A. (1986). Bases sociais de pensamento e ação: uma teoria social cognitiva. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- [3] Ballone, L. M., e Czerniak, C.M. (2001). Crenças do professor sobre acomodando estilos de aprendizagem dos alunos nas aulas de ciência. *Revista Eletrônica de Ciências da Educação*, 6, Disponível on-line: http://ejse.southwestern.edu/original% 20site/manuscripts/v6n2/articles/art03_ballone/balloneetal.pdf
- [4] Zusho, A., Pintrich, PR, e Coppola, B. (2003). Habilidade e vontade: O papel da motivação e cognição na aprendizagem de química da faculdade. *International Journal of Science Education*, 25, 1081-1094
- [5] Scott, TP, Schroeder, C., Tolson, H., & Bentz, A. (2006). K-12 instrução ciência eficaz; Elementos do ensino de ciências baseado em investigação. Centro de Matemática e Ciências da Educação, Texas A & M University, Faculdade de Ciências: Iniciativa Ciência Texas da Agência de Educação do Texas.
- [6] Antonoglou, L.D., Charistos, N.D., e. Sigalas, P.F. (2011). Concepção, desenvolvimento e implementação de uma tecnologia melhorada curso híbrido em simetria molecular: resultados e atitudes dos alunos, Pesquisa Prática Química Educação, 12, 454-468.
- [7] Korakakis, G., Pavlatou, EA, Palyvos, JA, e Spyrellis, N. (2009). Tipos de visualização 3D em aplicações multimídia para a aprendizagem da ciência: um estudo de caso para os alunos 8 a série, na Grécia, Computadores e Educação,52, 2, 390-401.
- [8] Papageorgiou G., P. Johnson e Fotiades F., (2008), Explicar fusão e evaporação abaixo do ponto de ebulição. Software pode ajudar com idéias de partículas? Pesquisa em Ciência e Educação Tecnológica, 16, 165-183.
- [9] Pierri, E., Karatrantou, A., & Panagiotakopoulos, C. (2008). Explorando o fenômeno da "mudança de fase" de substâncias puras, usando o sistema baseado em microcomputador em laboratório (MBL). Educação Química: Pesquisa e Prática, 9, 234-239.
- [10] Danili, E., & Reid, N. (2004). Algumas estratégias para melhorar o desempenho em química escolar, com base em dois fatores cognitivos. *Pesquisa em Ciência e Educação Tecnológica*, 22, 203-226.