Lifelong Learning Programme

This project has been funded with support from the European Commission.
This material reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein

Also available in:

Webmaster: Pinzani.it

Database of Publications

Homepage > Students’ Motivation > Database of Publications > Publication's Form

PUBLICATION INFORMATION

TITLE OF PUBLICATION
NUFFIELD FOUNDATION’S REPORT ON SCIENCE EDUCATION IN EUROPE
NAME OF AUTHOR(S)
Jonathan Osborne, Justin Dillon
NAME OF PUBLISHER
King’s College London
YEAR OF PUBLICATION
2008
LANGUAGE OF PUBLICATION
English
PUBLICATION TYPOLOGY
Conference Article
TARGET GROUP OF PUBLICATION
Policy Makers
SIZE OF THE PUBLICATION
Over 10 pages
DESCRIPTION OF CONTENTS
ENG:
Why in recent times do fewer young people seem to be interested in science and technical subjects? Does this problem lie in wider socio-cultural changes or within science education itself? Is the issue common across Europe, or are there differences between countries? The Nuffield Foundation organised in 2006 two seminars investigating these questions and the results are summarised in the recently published report “Science Education in Europe”.
The main argument of the report is that schools’ science education has never provided a satisfactory education for the majority, and that it should be re-imagined.
Re-imagining the science education includes considering how it can be made fit for the modern world and how it can meet the needs of all students – those who will go on to work in scientific and technical subjects, and those who will not. The report suggests how this might be achieved in form of seven recommendations:
The primary goal of science education across the EU should be to educate students both about the major explanations of the material world that science offers and about the way science works. Science courses whose basic aim is to provide a foundational education for future scientists and engineers should be optional
More attempts at innovative curricula and ways of organising the teaching of science that address the issue of low student motivation are required. These innovations need to be evaluated. In particular, a physical science curriculum that specifically focuses on developing an understanding of science in contexts that are known to interest girls should be developed and trialled within the EU.
EU countries need to invest in improving the human and physical resources available to schools for informing students, both about careers in science – where the emphasis should be on why working in science is an important cultural and humanitarian activity - and careers from science where the emphasis should be on the extensive range of potential careers that the study of science affords.
EU countries should ensure that:
a. Teachers of science of the highest quality are provided for students in primary and lower secondary school;
b. The emphasis in science education before 14 should be on engaging students with science and scientific phenomena. Evidence suggests that this is best achieved through opportunities for extended investigative work and “hands-on” experimentation and not through a stress on the acquisition on canonical concepts
Developing and extending the ways in which science is taught is essential for improving student engagement. Transforming teacher practice across the EU is a long-term project and will require significant and sustained investment in continuous professional development.
EU governments should invest significantly in research and development in assessment in science education. The aim should be to develop items and methods that assess the skills, knowledge and competencies expected of a scientifically literate citizen.
Good quality teachers, with up-to-date knowledge and skills, are the foundation of any system of formal science education. Systems to ensure the recruitment, retention and continuous professional training of such individuals must be a policy priority in Europe.

FR :
Pourquoi ces derniers temps moins de jeunes semblent s’intéresser aux matières scientifiques et techniques ? Ce problème se situe-t-il dans de plus larges changements socioculturels ou dans l'enseignement des sciences lui-même ? Le problème est-il généralisé en Europe, ou y a-t-il des différences entre les pays ? La Fondation Nuffield a organisé en 2006 deux séminaires pour examiner ces questions et les résultats sont résumés dans le rapport récemment publié « L’Enseignement des sciences en Europe ».
L'argument principal du rapport est que l'éducation scientifique dans les écoles n'a jamais fourni une éducation satisfaisante pour la majorité, et qu'elle devrait être repensée.
Repenser l'enseignement des sciences passe par une réflexion sur la façon dont il peut être adapté au monde moderne et répondre aux besoins de tous les élèves - ceux qui continueront à travailler sur des sujets scientifiques et techniques et ceux qui arrêteront. Le rapport suggère des façons d’y parvenir sous la forme de sept recommandations :
L'objectif principal de l'enseignement des sciences à travers l'UE devrait être de sensibiliser les élèves à la fois aux principales explications du monde matériel que la science offre et sur la façon dont fonctionne la science. Les cours de sciences dont le but principal est de fournir une éducation fondamentale pour les futurs scientifiques et ingénieurs devrait être facultatifs.
Il faut plus de programmes et de moyens novateurs d'organiser l'enseignement de la science qui traitent de la question de la faible motivation des élèves. Ces innovations doivent être évaluées. Il faudrait notamment développer et tester au sein de l'UE un programme de sciences physiques qui se concentre spécifiquement sur le développement de la compréhension de la science dans des contextes qui sont connus pour intéresser les filles.
Les pays de l'UE ont besoin d'investir dans l'amélioration des ressources humaines et matérielles disponibles dans les écoles pour informer les élèves, à la fois sur les carrières en science - où l'accent devrait être mis sur les raisons pour lesquelles travailler dans la science est une activité culturelle et humanitaire importante - et les carrières de la science où l'accent devrait être mis sur la vaste gamme de possibilités de carrières que l'étude de la science procure.
Les pays de l'UE devrait s'assurer que :
a. des professeurs de science compétents soient proposés aux élèves de l'école primaire et secondaire inférieur ;
b. qu’avant 14 ans l’éducation scientifique cherche avant tout à impliquer les élèves dans la science et les phénomènes scientifiques. Il semble que la meilleure façon d’y parvenir soit par des travaux d'enquête et des expériences pratiques, et non par l'acquisition pure et dure de concepts canoniques.
Développer et étendre les moyens d’enseigner la science est essentiel pour améliorer l’implication des élèves. Transformer la pratique des enseignants dans l'UE est un projet à long terme et nécessitera des investissements importants et soutenus dans le développement professionnel continu.
Les gouvernements européens devraient investir significativement dans la recherche et le développement en matière d'évaluation dans l'enseignement des sciences. L'objectif devrait être de développer les éléments et les méthodes qui permettent d'évaluer les capacités, les connaissances et les compétences attendues d'un citoyen de culture scientifique.
Les enseignants de qualité, avec des connaissances et des compétences à jour, sont le fondement de tout système éducatif scientifique formel. Des systèmes pour garantir le recrutement, la rétention et la formation professionnelle continue de ces personnes doivent être une priorité politique en Europe.
REVIEWER’S COMMENTS ON THE PUBLICATION
ENG:
In this document some questions are made, for example why in recent times do fewer young people seem to be interested in science and technical subjects, whether this problem lies in wider socio-cultural changes or within science education itself; whether the issue is common across Europe, or there are differences between countries.
The main argument of the report is that schools’ science education has never provided a satisfactory education for the majority, and that it should be re-imagined.
Re-imagining the science education includes considering how it can be made fit for the modern world and how it can meet the needs of all students – those who will go on to work in scientific and technical subjects, and those who will not..
The primary goal of science education across the EU should be to educate students both about the major explanations of the material world that science offers and about the way science works.
Europe needs to invest in improving the human and physical resources available to schools for informing students about careers in science and ensure that the emphasis in science education before 14 should be on engaging students with science and scientific phenomena. Evidence suggests that this is best achieved through opportunities for extended investigative work and “hands-on” experimentation and not through a stress on the acquisition on canonical concepts.
Developing and extending the ways in which science is taught is essential for improving student engagement.
Good quality teachers, with up-to-date knowledge and skills, are the foundation of any system of formal science education. Systems to ensure the recruitment, retention and continuous professional training of these individuals must be a policy priority for EU.

FR:
Dans ce document des questions sont posées. Par exemple pourquoi ces derniers temps moins de jeunes semblent être intéressés par les matières scientifiques et techniques ; si ce problème se situe dans des plus larges changements socioculturels ou dans l'enseignement des sciences lui-même ; si la question est généralisée en Europe, ou s'il y a des différences entre les pays.
L'argument principal du rapport est que l'éducation scientifique des écoles n'a jamais fourni une éducation satisfaisante pour la majorité, et qu'elle devrait être repensée.
Repenser l'enseignement des sciences passe par une réflexion sur la façon dont il peut être adapté au monde moderne et répondre aux besoins de tous les élèves - ceux qui continueront à travailler sur des sujets scientifiques et techniques et ceux qui arrêteront.
L'objectif principal de l'enseignement des sciences à travers l'UE devrait être de sensibiliser les élèves à la fois aux principales explications du monde matériel que la science offre et sur la façon dont fonctionne la science.
L'Europe doit investir dans l'amélioration des ressources humaines et physiques disponibles dans les écoles pour informer les étudiants sur les carrières en science et s'assurer qu’avant 14 ans l’accent soit mis sur la participation des élèves dans la science et les phénomènes scientifiques. Il semble que la meilleure façon d’y parvenir soit par des travaux d'enquête et des expériences pratiques et non par l'acquisition pure et dure de concepts canoniques.
Développer et étendre les moyens d’enseigner la science est essentiel pour améliorer la participation des élèves.
Les enseignants de qualité, avec des connaissances et des compétences à jour, sont le fondement de tout système éducatif scientifique formel. Des systèmes pour garantir le recrutement, la rétention et la formation professionnelle continue de ces personnes doivent être une priorité politique pour l'Union européenne.
NAME OF THE REVIEWING ORGANISATION
INFOREF

Comments about this Publication

Your comments are welcome


Date: 2013.02.02

Posted by Anna Fedešová (Slovakia)

Message: This is a report written for Nuffield Foundation about the state of scientific education in European schools. It is interesting for many reasons. Firstly because it deals with a degree of integration and motivation of young people for study in Europe and secondly by its results and with 7 recommendation, which resulted from researches as ROSE, TIMMS, Euryduce and many others in different European countries. The report deals with 9 questions grouped into two parts. Part 1: State of education of a science in Europe, part 2: Improvement of teaching informatics. The result is 7 mentioned recommendations and measurements which need to be done. The report is focused on educational proccess in a school and recommendations are relevant mainly for this area. The important ones are recommendations number 2 and 5. Recommendation number 2 is about inovative curriculum and a new way for teaching scientific subjects to make it closer to “iPod generation” and methods of teaching should not be build on separate knowledge but at the basis of wider understanding of context of problems. Students could have a feeling that they are travelling by a train with black windows; they know they are getting somewhere, but only the engine-driver knows where. Recommendation number 5: a new methodological approach of a teacher which identifies an importance of using a language and arguments mainly in scientific discussion and gives better opportunities to integrate students into these discussions. Writing in a school often leads to copy-paste work on notebook and because of that it is very rare to see a cooperation in writing of reports, which are built on clear arguments. Individual European countries could focus on polic ies which support the world of showbiznis and with a cooperation with properly educated teachers of scientific subjects and professionals they could propose funny programs and broadcasting (different from the usual educating series) where scientific subjects will be attractively bring to young people. This could help with increasing of a popularity of science among current youth and simplify teaching of scientific subjects at primary schools and high schools.

Date: 2012.10.03

Posted by Rosalia Zunino (Italy)

Message: It is a report written for the Nuffield Foundation about the state of science education at school.
I consider the report relevant for these reasons:
it makes reference to several important research about this topic carried out in various European countries (ROSE, TIMMS, Euryduce, and many others, mentioned in the large bibliography), therefore it is a well documented work;
the 7 written recommendations to improve the teaching of science are sharable and significant, in particular the recommendations 2 and 5.
Recommendation 2: innovative curricula and new ways of organizing the teaching of science are required; the contents should be closer to the “iPod generation” and the methods of teaching should build a not fragmented knowledge, based on well-contextualized problems. It could save the students from the feeling –good metaphor- to travel on a train with blacked-out windows: they know they are going somewhere, but only the train driver knows where.
Recommendation 5: it is about the teacher’s methodological approach and identifies in the method of investigation and in the significant use of the language to construct an argument (also in discussion), two opportunities to improve student engagement. I quote, because I think it is a VERY important part:
(…) writing in school science rarely transcends the copying of information from the board to the students’ notebook. It is rare, for instance, to see any collaborative writing or work that involves the construction of an argument. Even experiments are written up formulaically. Little opportunity is provided for students to use the language of science even though there is good evidence that such opportunities lead to enhanced conceptual understanding 1. Research would suggest that this limited range of pedagogy is one reason why students disengage with science – particularly girls. The recent report produced by a team for the EU Directorate General on Research, Science, Economy and Society argued that a ‘reversal of school science-teaching pedagogy from mainly deductive to inquiry-based methods’ was more likely to increase ‘children’s and students’ interest and attainment levels while at the same time stimulating teacher motivation’ (…).
Research would also suggest that deep, as opposed to superficial understanding, comes through knowing not only why the right answer is right but also through knowing why the wrong answer is wrong. Such learning requires space to discuss, to think critically and to consider others’ views.
The recommendation 4 is important as well, because it identifies the age of 14 as limit to develop the interest and attitude toward science. Therefore much greater effort should be invested to improve the quality of science education before this age.
The report does not mention the chemistry in particular, but science education in general, even seeing the excessive disciplinary specialization of curricula in some countries as a point of weakness instead of strenght (for primary school I think a global vision of science education is essential).
In the matter of science in general, the report identifies as a cause of poor motivation of students, what has already mentioned in the previous answer:
a transmissive method of teaching instead of an inquiry-based one;
lack of sense in the study of science;
contents of little importance for a generation submerged in technology (themes of the nineteenth and twentieth centuries instead of opportunities by now widely offered by media such as astrophysics, neuroscience and molecular genetics):
contents too male oriented that do not attract girls.
For older students: lack of clarity about career opportunities in the scientific disciplines.

Date: 2012.09.09

Posted by Sanakis Ioannis (Greece)

Message: The publication deals with the degree of engagement and motivation of young people concerning science courses (including Chemistry) in Europe. The publication is a report based on two seminars held in London in 2006 at the Nuffield Foundation with the participation of 17 Science educators from Universities from several European countries. The report ascertains that “in recent times fewer young people seem to be interested in science and technical subjects”. Then, it attempts to identify the origin of this attitude and to recommend policies that the European states should follow to reverse the trend. The report considers 9 issues grouped in two parts (part1: The State of Science Education in Europe; part 2: Improving School Science Education) and makes 7 recommendations for the actions that need to be taken.

The report focuses on the educational process within school and the recommendations are relevant to this aspect. Apparently, outside school activities were beyond the purpose of this particular study. However, as the publication recognizes education within school constitutes only 18.5% of waking time. The publication does not address outside school activities. For instance the negative attitude of modern pupils towards science relates (also) with an image of a scientist as a boring “nerd” who lives in a parallel universe and works with hard to understand matters. Such a perception can be changed by the use of mass media (of both private and public sector) and the movie industry. The states could aim at policies which encourage the world of “showbiz”, in collaboration with suitably trained science teachers and experts, to design entertaining shows and broadcasts (other than ordinary educational series) where scientific issues are ably implied. Such activities might help to increase the popularity of science among modern youth and will facilitate the education work in the elementary and secondary school classroom.

National Reports on successful experiences to promote lifelong learning for chemistry The national reports on chemistry successful experiences to promote lifelong learning for chemistry are now available on the related section of the project portal. The reports presents examples of successful experiences in the partner countries and the results of testing of ICT resources with science teachers.

.